2024
Deboutte, Ward; Smet, Lina De; Brunain, Marleen; Basler, Nikolas; Rycke, Riet De; Smets, Lena; de Graaf, Dirk C.; Matthijnssens, Jelle
Known and novel viruses in Belgian honey bees: yearly differences, spatial clustering, and associations with overwintering loss Journal Article
In: Microbiol Spectrum, vol. 12, iss. 7, pp. e0358123, 2024.
Abstract | Links | BibTeX | Tags: Project 11, WP 1.1 Virus identification, WP 1.2 Host prediction
@article{Deboutte2024,
title = {Known and novel viruses in Belgian honey bees: yearly differences, spatial clustering, and associations with overwintering loss},
author = {Ward Deboutte and Lina De Smet and Marleen Brunain and Nikolas Basler and Riet De Rycke and Lena Smets and Dirk C. de Graaf and Jelle Matthijnssens},
doi = {10.1128/spectrum.03581-23},
year = {2024},
date = {2024-07-02},
journal = {Microbiol Spectrum},
volume = {12},
issue = {7},
pages = {e0358123},
abstract = {In recent years, managed honey bee colonies have been suffering from an increasing number of biotic and abiotic stressors, resulting in numerous losses of colonies worldwide. A pan-European study, EPILOBEE, estimated the colony loss in Belgium to be 32.4% in 2012 and 14.8% in 2013. In the current study, absolute viral loads of four known honey bee viruses (DWV-A, DWV-B, AmFV, and BMLV) and three novel putative honey bee viruses (Apis orthomyxovirus 1, apthili virus, and apparli virus) were determined in 300 Flemish honey bee samples, and associations with winter survival were determined. This revealed that, in addition to the known influence of DWV-A and DWV-B on colony health, one of the newly described viruses (apthili virus) shows a strong yearly difference and is also associated with winter survival. Furthermore, all scrutinized viruses revealed significant spatial clustering patterns, implying that despite the limited surface area of Flanders, local virus transmission is paramount. The vast majority of samples were positive for at least one of the seven investigated viruses, and up to 20% of samples were positive for at least one of the three novel viruses. One of those three, Apis orthomyxovirus 1, was shown to be a genuine honey bee-infecting virus, able to infect all developmental stages of the honey bee, as well as the Varroa destructor mite. These results shed light on the most prevalent viruses in Belgium and their roles in the winter survival of honey bee colonies.
Importance: The western honey bee (Apis mellifera) is a highly effective pollinator of flowering plants, including many crops, which gives honey bees an outstanding importance both ecologically and economically. Alarmingly high annual loss rates of managed honey bee colonies are a growing concern for beekeepers and scientists and have prompted a significant research effort toward bee health. Several detrimental factors have been identified, such as varroa mite infestation and disease from various bacterial and viral agents, but annual differences are often not elucidated. In this study, we utilize the viral metagenomic survey of the EPILOBEE project, a European research program for bee health, to elaborate on the most abundant bee viruses of Flanders. We complement the existing metagenomic data with absolute viral loads and their spatial and temporal distributions. Furthermore, we identify Apis orthomyxovirus 1 as a potentially emerging pathogen, as we find evidence for its active replication honey bees.},
keywords = {Project 11, WP 1.1 Virus identification, WP 1.2 Host prediction},
pubstate = {published},
tppubtype = {article}
}
Importance: The western honey bee (Apis mellifera) is a highly effective pollinator of flowering plants, including many crops, which gives honey bees an outstanding importance both ecologically and economically. Alarmingly high annual loss rates of managed honey bee colonies are a growing concern for beekeepers and scientists and have prompted a significant research effort toward bee health. Several detrimental factors have been identified, such as varroa mite infestation and disease from various bacterial and viral agents, but annual differences are often not elucidated. In this study, we utilize the viral metagenomic survey of the EPILOBEE project, a European research program for bee health, to elaborate on the most abundant bee viruses of Flanders. We complement the existing metagenomic data with absolute viral loads and their spatial and temporal distributions. Furthermore, we identify Apis orthomyxovirus 1 as a potentially emerging pathogen, as we find evidence for its active replication honey bees.
2021
Goettsch, Winfried; Beerenwinkel, Niko; Deng, Li; Dölken, Lars; Dutilh, Bas E.; Erhard, Florian; Kaderali, Lars; von Kleist, Max; Marquet, Roland; Matthijnssens, Jelle; McCallin, Shawna; McMahon, Dino; Rattei, Thomas; van Rij, Ronald P.; Robertson, David L.; Schwemmle, Martin; Stern-Ginossar, Noam; Marz, Manja
ITN -- VIROINF: Understanding (Harmful) Virus-Host Interactions by Linking Virology and Bioinformatics Journal Article
In: Viruses, vol. 13, no. 5, pp. 766, 2021.
Abstract | Links | BibTeX | Tags: Project 01, Project 02, Project 03, Project 04, Project 05, Project 06, Project 07, Project 08, Project 09, Project 10, Project 11, Project 12, Project 13, Project 14, Project 15, WP 1.1 Virus identification, WP 1.2 Host prediction, WP 1.3 Virus-host interactions, WP 1.4 Virus regulation, WP 1.5 Virus products, WP 2.1 Microevolution: Virus quasispecies, WP 2.2 Macroevolution: Natural selection of viruses
@article{nokey,
title = {ITN -- VIROINF: Understanding (Harmful) Virus-Host Interactions by Linking Virology and Bioinformatics},
author = {Winfried Goettsch and Niko Beerenwinkel and Li Deng and Lars Dölken and Bas E. Dutilh and Florian Erhard and Lars Kaderali and Max von Kleist and Roland Marquet and Jelle Matthijnssens and Shawna McCallin and Dino McMahon and Thomas Rattei and Ronald P. {van Rij} and David L. Robertson and Martin Schwemmle and Noam Stern-Ginossar and Manja Marz},
doi = {10.3390/v13050766},
year = {2021},
date = {2021-04-27},
urldate = {2021-04-27},
journal = {Viruses},
volume = {13},
number = {5},
pages = {766},
abstract = {Many recent studies highlight the fundamental importance of viruses. Besides their important role as human and animal pathogens, their beneficial, commensal or harmful functions are poorly understood. By developing and applying tailored bioinformatical tools in important virological models, the Marie Skłodowska-Curie Initiative International Training Network VIROINF will provide a better understanding of viruses and the interaction with their hosts. This will open the door to validate methods of improving viral growth, morphogenesis and development, as well as to control strategies against unwanted microorganisms. The key feature of VIROINF is its interdisciplinary nature, which brings together virologists and bioinformaticians to achieve common goals.},
keywords = {Project 01, Project 02, Project 03, Project 04, Project 05, Project 06, Project 07, Project 08, Project 09, Project 10, Project 11, Project 12, Project 13, Project 14, Project 15, WP 1.1 Virus identification, WP 1.2 Host prediction, WP 1.3 Virus-host interactions, WP 1.4 Virus regulation, WP 1.5 Virus products, WP 2.1 Microevolution: Virus quasispecies, WP 2.2 Macroevolution: Natural selection of viruses},
pubstate = {published},
tppubtype = {article}
}